1-GLYCOSYLINDAZOLES

I.A.Korbukh, F.F.Blanco, M.N.Preobrazhenskaja

Department of Chemistry, Institute of Experimental and Clinical Oncology of the USSR Academy of Medical Sciences, Moscow

(Received in UK 27 July 1973; accepted for publication 8 October 1973)

Glycosylation of indazole, 4-, 5- and 6-nitroindazoles, 3-cyanoindazole via "trimethylsilyl" or "Hg(CN)₂-nitromethane" methods afforded corresponding 2-glycosylindazoles $^{[1-4]}$. In this paper we describe the methods of synthesis of 1-glycosylindazoles. These nucleosides are more interesting than the 2-isomers as potential antimetabolites because of their greater structural similarity to the naturally occuring purine nucleosides.

Fusion of indazole with tetra-O-acetyl- β -D-ribofuranose or with penta-Oacetyl- β -D-glucopyranose in vacuo at 160° in the presence of I₂ gave in 70% yield 1-(2,3,5-tri-O-acetyl- β -D-ribofuranosyl)indazole (I), syrup,[\ll]²⁵_D-43^o (1.2, CHCl₃) or 1-(2,3,4,6-tetra-0-acetyl- β -D-glucopyranosyl)indazole (II), m.p. 164-165°, $[\swarrow]_{D}^{25}$ -51°(1.0, CHCl₃). Deacetylation of I and II with methanolic ammonia furnished 1-(β -D-ribofuranosyl)indazole (III), m.p. 174-175°, $[\sim]_{\rm D}^{25}$ -136° (1.36, pyridine) and 1-(β -D-glucopyranosyl)indazole (IV), m.p. 205-207°, $[\sim]_{D}^{25}$ -27°(1.0, pyridine). UV-spectral data for I-IV are similar : harphi EtOH 250(ϵ 4800), 257(ϵ 4200), 288(ϵ 4100), 299(ϵ 4600) nm. The site of glycosylation was readily determined as 1-N by comparison between these data with the UV-spectral data reported for 1- and 2-methylindazoles and 2-glycosylindazoles^[2,4,5]. PMR-spectral data also confirm the identification of I-IV as 1-glycosylindazoles. The values of $\Delta \delta = \delta_{d-DMSO} - \delta_{CDCl_3}$ of C_3H for I and II (0.12 ppm and 0.23 ppm) are close to 0.1 ppm for 1-methylindazole, whereas those for 2-methylindazole and 2-(2,3,4,6-tetra-0-acetyl- β -D-glucopyranosyl)indazole (V) are 0.47 ppm and 0.37 ppm^[4,6]. In FMR spectra of

Table.	PMR	spectra	(JNM	4 H-1 00	instrument,	TMS	internal	standart).
			• • • • • • • •					

	Chemical Shifts (& ppm)							J _{vic} (Hz)			
Comp.	с ₃ н	с ₁ ,н	с ₂ ,н	с ₃ ,н	с ₄ ,н	с ₅ ,н	с ₆ ,н	сн ₃ со-	^J 1'2'	J _{2'3'}	^J 3*4* (J _{4*5*})
Ia	8.24	6.53	5•99	5•72	3•95-	- 4•50		1.89;2.05; 2.13	3.0		
Ip	8.01	6,26	6.07	5.82	4.00-	- 4.50		1.96;2.06; 2.08 [.]	3.2		
11 ^a	8.12	6.38	5.76;	5.52;	5.16	4.36	4.11	1.63;1.96; 1.96;2.05	8.6	8.6	8.6 (8.6)
ΙI	8.00	5	i•15 -	, - 6 .1 (6.10		- 4.35	1.69;2.00; 2.03;2.06			
IIIc	8.03	6.62	5.36	4.95	4.59	4.06			4.2	4.0	4.0
INc	8,05	6.10 5.00 3.95 -			- 4,45			8.0	9.0		
٧ ^c	8,02	6.70	5.02	4•'	70	3.94			6.3		
VII ^a	8.31	6.74	5•45	6.42	5.18	3.70	4•45	1.65;1.90; 1.98;2.02	6.0	10.0	9.0 (10.0)
VIIIC	7•98	6.58	4•50	4.35	4.0	95 — 4	•35		6.0	9•7	7.0

Solvent at 50° C : a d-DMSO, b CDCl₃, c C₅D₅N. Shifts for benzene nucleus protons in range of 6.90 - 7.90 ppm.

glucosides II and IV the values of $J_{\rm vic}$ for protons of glucopyranose fragment indicate their β -configuration in conformation C1. Periodate oxidation followed by reduction with NaBH₄ of both glucoside IV and riboside III gave products with approximately equal large positive $[M]_D^{25}(+60^\circ \text{ for IV and }+70^\circ \text{ for III})$. This allows to conclude on β -configuration of riboside III. Both nucleosides III and IV demonstrate negative long-wavelength Cotton-effect in CD spectra.

The fusion method may be considered as a general method for synthesis of 1-N-glycosides of fused pyrazoles - indazoles, pyrazolo(3,4-b)pyridines and pyrazolo(3,4-b)pyrazines^[7-9]. The formation of 1-glycosides at 160-170° in the presence of I_2 may be determined by their greater termostability compared to 2-isomers as well as by I_2 catalysis. This suggestion is confirmed by the fact, demonstrated in our experiments, that by heating at 160° in the presence of I_2 during 25 min 2-glucosylindazole V was completely isomerizated to 1-isomer II. We have also found that it is the addition of molecular sieve (Zeosorb 4 Å) to a solution of indazole, acetobromglucose and $Hg(CN)_2$ in boiling nitromethane that produced II in 70% yield. Experiments without addition of molecular sieve catalysed $N \rightarrow N$ glycosyl migration was demonstrated for vic-triazolo(4,5-d)pyrimidines^[10].

By deacetylation of the mother liquors of crystllisation of I we prepared in 1% yield the isomer of riboside III the glycoside VI, m.p. 202° , $[\prec]_D^{25} +90^{\circ}$ (2.3, pyridine). Respectively while obtaining II we separated the minor product tetraacetate VII, $[\prec]_D^{25} +56^{\circ}(3.6, \text{ pyridine})$, which when deacetylated produced glycosylindazole VIII, m.p. $200^{\circ}, [\prec]_D^{25} +60^{\circ}(0.2, \text{ pyridine})$.UV-spectral data of VI-VIII indicate that they are 1-glycosylindazoles. The values of $[M]_D^{25}$ of periodate oxidation - NaBH₄ reduction products for VI (-60°) and VIII(-70°) are equal in magnitude and opposite in signs to those for III and IV respectively. These data permit to conclude that glycosides III and VI, IV and VIII are C-14 epimers. One can suppose that VI is 1-(\prec -D-ribofuranosyl)indazole and VIII is 1-(\prec -D-glucopyranosyl)indazole. However it is difficult to explain a large magnitude of $J_{1'2'}(6.0 \text{ Hz})$ observed for VIII. J_{vic} for other carbohydrate protons are 9-10 Hz, this indicates to their trans-diaxial orientation. Recently large values of $J_{1'2'}$ (5.7 Hz and 5.3 Hz) was observed for 1-(\prec -D-glucopyranosyl)imidazole and for its tetra-acetate^[11]. Glycoside VI gave a metaperiodate-benzydine test^[12] typical of ribonucleosides. Both glycosides VI and VIII demonstrate negative long-wavelength Cotton-effect in CD spectra.

It is interesting that Revancar and Townsend ^[2] have described their "1-(β -D-ribofuranosyl)indazole", m.p. 205°, $[\ll]_D^{\geq 3}$ +9.22° (1.0, pyridine) isolated in 5% yield as minor product by ribosylation of N-trimethylsilylindazole. The anomeric configuration of that compound was tentatively assigned as β - on the basis of trans-rule and a comparison of its specific rotation with that (+16.0°) reported for 1-(β -D-ribofuranosyl)benzimidazole. The 1-(β -D-ribofuranosyl)indazole (III) obtained in our experiments differs from Revancar and Townsend's compound in the values of m.p. and $[\ll]_n$.

REFERENCES

- 1. H. Brauniger, A. Koine, Pharmazie, 20, 457 (1965).
- 2. G.R. Revancar, L. B. Townsend, J. Heterocyclic Chem., 7, 117 (1970).
- 3. G.R. Revancar, L. B. Townsend, J. Heterocyclic Chem., 7, 1329 (1970).
- 4. G.Alonso, G.Garcia-Munoz, R.Madronero, J.Heterocyclic Chem., 7, 1435(1970).
- 5. V. Rousseau, H.G. Lindwall, J. Am. Chem. Soc., 72, 3047 (1950).
- 6. J. Elguero, A. Fruchier, R. Jacquier, Bull. Soc. Chim. France, 1966, 2075.
- 7. I. A. Korbukh, F. F. Blanco, M. N. Preobrazhenskaja, H.Dorn, Zhurn. Org. Khimii SSSR, 7, 2633 (1971).
- A. Korbukh, F. F. Blanco, M. N. Preobrazhenskaja, H. Dorn, N. G. Kondakova, T. I. Sukhova, N. P. Kostuchenko, Zhurn. Org. Khimii SSSR, 9, 1266, (1973).
- 9. I. A. Korbukh, F. F. Blanco, M. N. Preobrazhenskaja, Shurn. Org. Khimii SSSR, 9, 852 (1973).
- 10. J. A. Montgomery, R. D. Elliott, Chem. Comm., 1279 (1972).
- E. J. Bourne, P. Finch, A.G. Nagpurkar, J.Chem.Soc. Perkin Trans. I, 2202 (1972).
- 12. G.G. Buchman, C.A. Dekker, A.J. Long, J. Chem. Soc., 3162 (1950) .